Source Category Listing for the Arizona HAPRACT Rule

Presented to
Arizona HAP Stakeholders
14 September 2005

Presented by
Steven Mauch
Weston Solutions, Inc.

Objectives

- Review air dispersion modeling approach for classifying SIC codes
- Explain resolutions of issues encountered in the modeling process not included in original approach
- Illustrate modeling process for example facilities

SIC Codes and Inventories

- List of candidate SIC codes in Arizona
 - Toxics Release Inventory (TRI)
 - Arizona HAP Inventory
 - At least 1 TPY single HAP or 2.5 TPY total HAPs
- HAP emission quantities and emission point data from readily available sources
 - Arizona I-STEPS Emissions Database
 - Maricopa, Pima, and Pinal County Agencies
 - ADEQ Permits & Modeling Files

3

Modeling Approach

- Specific HAP compound emissions matched to specific emission points at each facility
 - Fullest extent allowed by information available
 - Actual emission points used where identifiable
 - Surrogate emission points used otherwise
- Use screening modeling approach to determine potential for ambient air impacts in excess of the AACs

- USEPA SCREEN3 model used
 - Most recent version (96043)
 - Screening version of refined ISC3 model
- SCREEN3 model options used
 - Regulatory mixing height & cavity options
 - Default anemometer height (10 m) (32 ft)
 - Flat simple terrain
 - Rural dispersion
 - Default ambient temperature (293 K) (68 F)
 - Full meteorology (54 wind speed/stability combinations)

5

Air Dispersion Modeling

- Receptor distances automatically generated
 - Assumed Process Area Boundary (PAB) at 25 meters (82 ft) for all sources
 - PABs were not readily identifiable from aerial photos
- Buildings
 - Used actual dimensions if available
 - If actual dimensions not available, attempted to obtain approximate horizontal dimensions from aerial photos

- Estimated building dimensions
 - If no data available in inventories or identifiable from aerial photos
- Horizontal set to 40 m x 40 m
 - Makes building height controlling factor for downwash effects
- Heights estimated as the greater of
 - [Stack height (m) / 1.5] 0.1, or
 - > Produces worst-case downwash effects
 - -3.66 m = 12 ft = single-story
 - > Lower bound for building-mounted vents

7

Air Dispersion Modeling

- HAP compounds modeled
 - Compounds listed in TRI and AZ HAP Inventory
 - Added any additional compounds found in County inventories
 - All compounds for a facility were modeled
- HAP sources modeled
 - Only those stacks identifiable as having HAP emissions were considered
 - Some inventories only identified stacks as VOC or HAP, without specific compounds

- Emission Rates
 - Goal was to use Potential to Emit (PTE) for all sources
 - PTE was available from inventories for many sources
- Where PTE was not available
 - Hours of operation were considered (if available)
 - Actual emissions were prorated using ratio of 8,760 hours to operating hours
 - If no PTE or operating hours were available, TRI reported emissions were used
- If multiple emission rates were available, maximum rate was used
 - ADEQ / County inventories (PTE), or TRI

9

Air Dispersion Modeling

- Source characteristics
 - Individual sources used where identified
 - Capped or non-vertical stacks modeled with exit velocity of 0.001 m/s
 - Multiple stacks with identical characteristics (except for emissions)
 - > Considered as a single stack
 - Multiple general HAP stacks without individual compound emission rates
 - > Screened to identify worst-case dispersion stack

- A total of 64 facilities were modeled
- Not all facilities modeled
 - Modeled facilities in each SIC only until any one met listing criteria
 - No further facilities modeled in that SIC code
- A total of 41 SIC codes were modeled
- 28 SIC codes met listing criteria

11

Example Facility #1

- Nucor Steel Kingman (North Star Steel)
 - SIC 3312, Blast Furnaces & Steel
- Manganese & nickel emissions identified by inventories
 - ADEQ supplied PTE
 - Focus on nickel for this example
- Two stacks identified as HAP sources
 - Both tall, uncapped furnace stacks
 - Emission rates provided for each stack

Example Facility #1

- Each stack modeled separately
 - Reheat Furnace
 - Arc Furnace
- Model run using 1 g/s emission rate
 - Peak 1-hour impacts
 - > Reheat Furnace = $50.1 (\mu g/m^3) / (g/s)$
 - > Arc Furnace = 120 $(\mu g/m^3) / (g/s)$
 - Scaled using nickel emission rate
 - Factor of 0.08 used to convert to annual average

13

Example Facility #1

- Nickel emission rates
 - Reheat Furnace = $1.32 \text{ lb/hr} = 1.66 \times 10^{-1} \text{ g/s}$ = 0.166 g/s
 - Arc Furnace = 8.59×10^{-3} lb/hr = 1.13×10^{-3} g/s = 0.00859 lb/hr = 0.00113 g/s

Example Facility #1

- Ambient concentrations calculated
 - Total = (Reheat Furnace) + (Arc Furnace)
 - 1-hour Total = 8.34 + 0.135 = 8.47 μ g/m³
 - Annual Total = $0.667 + 0.0108 = 6.78 \times 10^{-1} \mu g/m^3$ = $0.678 \mu g/m^3$
- Total concentrations compared to nickel AACs
 - 1-hour (Acute) = 0.17% of AAC
 - Annual (Chronic) = 8,578% of AAC

15

Example Facility #2

- Wallnox Enterprises dba Desert Sun Fiberglass
 - SIC 3089, Plastic Products (not elsewhere classified)
- Styrene only HAP identified by inventories
 - Facility total emissions = 73,964 lb/yr (TRI)
 - Operating hours = 2,080 hr/yr (Maricopa Co.)
- Three stacks identified as VOC/HAP sources
 - All designated capped
 - No stack-specific emission rates

Example Facility #2

- Chose worst-case dispersion stack based on procedures in approach document (Stack 1)
- All styrene emissions modeled using Stack 1 characteristics
 - Exit velocity changed to 0.001 m/s due to obstruction
- Model run using 1 g/s emission rate
 - Peak 1-hour impact = $29,880 (\mu g/m^3) / (g/s)$
 - Scaled using styrene emission rate
 - Factor of 0.08 used to convert to annual average

Example Facility #2

- Styrene emission rate
 - Calculated from operating hours & annual emissions
 - (73,964 lb/yr) / (2,080 hr/yr) = 35.6 lb/hr = 4.48 g/s
- Ambient concentrations calculated
 - 1-hour = 1.34 x 10⁵ μ g/m³ (134,000)
 - Annual = $1.07 \times 10^4 \,\mu\text{g/m}^3$ (10,700)
- Concentrations compared to styrene AACs
 - 1-hour (Acute) = 24.2% of AAC
 - Annual (Chronic) = 1,030% of AAC